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STUDY OF STRAIN-HARDENING NEAR CRACK TIPS

ABSTRACT

A nonlinear integral equation approach is developed for the elastic-
plastic analysis of stresses and strains near crack tips. This approach
is potentially useful for numerical methods of calculation. If the elastic
solution is known, the finite difference network does not have to encompass
the complete body, but only needs to include the plastic zone to obtain the
plastic part of the solution.

Attempts to use this technique to generate simplified models of the
material behavior at the crack tip and thereby develop simplified failure
criteria were not successful. This work revealed the importance of the
description of the microstructure in the regﬁén’where the crgik propagates.

g

It is concluded that this description is as é%sential as the gtrain-hardening

< g s i

continuum representation of the material for’fhe establishment of a useful

failure criterion.
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Introduction

Efficient structural engineering design requires a good understanding of
failure and fracture mechanisms. Fracture in brittle elastic materials has
been fairly well described by stress analysis based upon the linear theory of

elasticity combined with a failure criterion of Griffith [1L].

Griffith's criterion has also been widely used in a form based upon the
stress intensity factor. The success of such methods, involving infinite
stresses in the mathematical analysis, has been given a more palatable physi-
cal interpretation by Barenblatt [16]. Barenblatt has essentially provided a
simple way to introduce a measure of the intermolecular forces or microstructure

into the continuum model of linear elasticity.

The stress intensity factor criterion does not agree well with experimen-
tal results for more ductile materials where noticeable plastic strain occurs.
An important step toward a description of plastic yielding at a crack was intro-
duced by Dugdale [10]. The analysis, based upon the initial yield stress of &
the material, successfully predicts{the size of the-yie¥§ zone. However, théw

Dugdale model does not provide a failure criterion.

When the present investigation was started it was hoped that modification
of the Dugdale model to include a strain hardening description of the material
could be used to obtain a failure criterion. The approximate methods of stress
analysis for the nonlinear continuum given in this report are still very crude

and must be refined.

However, initial attempts at analysis have led to the conclusion that
not only the strain hardening properties of the continuum but also a descrip-
tion of the miecrostructure at a crack tip will be necessary to establish a
failure criterion for a ductile material., Since the problem is nonlinear

there is little chance that a stress concentration factor method can be used.
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I. General Relationships

Deformation Theory of Plasticity

In this chapter we will formulate the general stress-strain relations for
a linearly strain hardening material under conditions of proportional loading.
That is, the discussion is one of the deformation theory of plasticity. Defor-
mation theory provides definitevstress—strain relations which simplify the
mathematical analysis. It has been used by Rice [1l, 2] for the solution of
several problems of longitudinal shear near notches and cracks. It has also
been used by Hutchinson '3, L] and Rice and Rosengren [5] in the study of a
type of stress singularity near a crack. Budiansky [6] has suggested that
the deformation theory also provides a good description of stress and strain
distributions in many cases where the requirements of proportional loading are
not met.

In the case of proportional loading the strain rates can be integrated to
give a one to one correspondence between the plastic strains eg. and the

stress deviator components Sij' The form given by Mendelson [7] is
P 3°p
et, = §Ge s, (1.1)

where the effective stress is

ce = /3J2 = "/33

1 2 2
15513 = /%i(oxasy) + (cy—cz)

2 2 2 2 2
b 0,0 k662 P TP (L2

and ep is the total plastic strain.
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If we refer to the relationship between effective stress o and total
strain ¢ sketched in Fig. 1.1, we can express the secant modulus ES as

the ratio of effective stress to total strain, or

Q

€
= -8 _ - -k
E, = = (1 - ) E

where E is Young's modulus of elasticity. Now eq. (1.1) can be written as

p _31 _1 -3 A
eij"e(Es §) Si3 = 510 5135 = 25 Sij (1.3)
where
11
MNTELCE
S
(1.4)
A =

1 1
3G AO = 3G(E;~E

ik

Note that if SR < O the initial yield stress in simple tension, then ES = B

and ko = A = 0., The initial yield stress in pure shear To is given by

To = Uo//§ (1.5)
Te %e
]
Etan
G; F ES cb-l- ]
| ' : ' Es
£ '
' / !
1] N
1 [)
o €, € o €, €
Fig, 1.1 Fig. 1.2
Effective stress vs Characteristic of
total strain linear strain hardening



For a material which strain hardens linearly, i.e., for a material having

a bilinear effective stress-total strain curve (rig, 1.2), the secant modulus

ES can be expressed in terms of the tangent modulus Etan Lo give
o}
1 1 Oyr 1 1
Ny =i - 3= (-2
© ES B Ge Etan E
(1.6)
%, 1 1
A= 36 = 3(;(1-0—)(E -5
tan
where Ge > Oq As before, KO = A = 0 vwhen S 5430.

Plane Stress

Here we consider the problem of plane stress. In a state of plane stress

parallel to the xy plane, the stress components Ton? Tyz and o, are all

zero. Thus, the effective stress is
2 2 i 2 2
g = (0 + 0 ~-00_ + 3r )l/ (l 7)
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1 - 1
ey=g§=ﬁ(0y-vcx)+)\o(0y-—§0) (1.8)

where L\, 1is given by (1.4) in terms of the Young's modulus E and the
current value of the secant modulus ES.
The nonzero stress components Ts cy, Txy satisfy the two equations

of equilibrium



do or

St O

(1.9)
or . O
St =0
These equations are identically satisfied if we express1the stress
componenfs in terms of the Airy stress function w:
ch = pry} O'y = O s Txy = -(DXy (l. 10)
The strain components € ey, exy satisfy the compatibility equation
Bgex Bgey Bgexy
+ =2 (1.11)
The compatibility equation expressed in terms of o reads
1,22 1 1
=v = = - - - A .
gV Vo= -MG(0,-50 015 0 = Do(o =50, ) 1y + 3T oy (1.12)

Transverse Shear

In the case of transverse shear the only nonvanishing displacement com-
ponent is w, normal to the =xy plane. Therefore, the only nonzero stress
components are L and TyZ’ which will be abbreviated to T and Ty.
The effective stress expressed in terms of these 2 stress components is

2)1/2

v (1.13)

0e=~/§('r§+'r

The nonvanishing strain components are



1w 'x . p _"x
%z 23~ 26 " %xz T 2G (241)
(1.14)
1 _ Ty, p _ly
— Sy - 20 +t e, = 3G (1+0)

The compatibility equation obtained by eliminating w from the last two

equations is

Sr ()] = Sl (14)] (1.15)

The only equilibrium equation which is not satisfied identically is

the one for forces acting normal to the x-y plane
TX +-51 = 0 (1.16)

This equilibrium equation is satisfied by the choice of a stress potential

0 Where
_ Ao
T3 ¢ Ty = o (1.17)

Substitution of equations (1.17) into (1.16) gives the compatibility

equation for the stress function o

% - 0 (1.18)
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In the case of linear strain hardening

0 TS T,
A= . (1.19)
o
g(1 - :l‘—) T > To
where
1 1
B = 3G( - =) (1.20)
Etan E
and
2 2\1/2 2 2,1/2
NG LA Colte o (1.21)

Transverse Shear: FElastic folution for Half Space

We consider the half space y > O with the following transverse shear

boundary loading at the face y = 0:

T e x0 lxl <a
n
n=0
T = = (l. 22)

0 x| > a

Assuming that there is no yielding (i.e., for the fully elastic problem), we
can write the stress components at a point z = x + iy (not to be confused

with the =z coordinate) in the form

F(z) = Tyt it (1“?3)



where the complex stress function F(z) is given in terms of the boundary
loading Ty by

o7 (t)

F(z) = = | ~L—at (1.24)

For the polynomial loading given above, the following complex stress function

is obtained

1 Z=8, N n 2 N
n:o l.’1=0
where Etl
2 zn-2i+la2i-l
8, = . 5T (126)
i=1

and [E%l] denotes the integral part of (n+l)/2.

We shall later examine in detail the above problem with the parabolic

shear loading

2
Tm(l -x7) [x!<1, y=0
T =
y .
0 x| >1, y=0 (r.27)
The fully elastic solution for this loading is
T
. m 2 z-1
Fe(z) =T ot iT, = ET{(l'Z n = -2 2} (1.28)

The indefinite integral of Fe(z) gives

Feo(z) = + iGw = ;%{(2+z)(l-ze)ln(z—l) + (2-z)(z+l)21n(z+l) + 222] + cst
e (1.29)

whose real part gives the elastic stress function me(x,y) and the imaginary

part gives the displacement component w(x,y) times the elastic modulus G.
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IT An Integral Equation Formulation

The Transverse Shear Problem

We will now examine the partial differential equation (1.8 ) for trans-
verse shear and develop a numerical method for its solution based upon an

integral equation formulation. The compatibility equation is
2 ) ) -
Vg = yx(%'ry) - yy(hx) = p(x,y) (2.1)

Various iterative techniques have been developed for the solution of
non-linear equations of this form., Most of the methods consist of a process
in which the right hand side of the equation is calculated from a previous
approximate solution. From this known "inhomogeneous term" a new approxima-
tion for o 1is found, and it is used to determine the right hand side for
the next step of the iteration.

The process 1s continued until successive solutions differ only slightly
or appear to have converged to the limiting solution., Of course, the boundary
conditions are satisfied at each step of the iteration. TFor the first step
the elastic solution is chosen where all plasticity effects are ignored .

The material considered in Chapter I behaves like a linear elastic solid
if the effective stress remains below the initial yield stress o Therefore,
A is identically zero and (2.1) reduces to Laplace's equation in the elastic

region. That is, ¢ 1is a harmonic function in the elastic zone.



Fig. 2.1 The Body D with Plastic Region A.

By using the Green's function G(P;Q), see Sneddon [8], the partial
differential equation (2.1) and its boundary conditions can be transformed

into an equivalent integral equation. The Green's function has the form

2m G(P;Q) = - 1n Tpg + V (2.2)

where rPQ is the distance between the source point Q at (£,T) and the
observation point P at (x,y). The harmonic function V is regular in
all of the region D and is chosen so that the Green's function vanishes if

P is on the boundary C of the region:
G(P;Q) =0 if Pe C (2.3)
It can also be shown that the Green's function is symmetric or
G(P;Q) = G(Q;P) (2.k)

The right hand side of equation (2.1) can be considered to be a distribu-
tion of sources. Then a solution of the inhomogeneous equation is given by
the Poisson integral with the fundamental singular solution -(ln rPQ)/En as

kernel.



. in rPQ
0 () = [ = —r o(€,M)aganN (2.5)

However, if we use the complete Green's function of equation (2.2) as‘
kernel then the integral not only is an inhomogeneous solution of equafion
(2.1),but because of property (2.3) it follows that the integral also van-
ishes identically if .P is on the boundary.

We can also add an elastic solution 0, (corresponding to p = 0 - in

(2.1)) in order to write the general solution as
#(®) = [ 6(BT50m,) - S0 )1agan + g (P) (2.6)

Since A 1is identically zero in the elastic regions, the integration
in the last equation need only be extended over the plastic region A. Also
the integral vanishes if P 1lies on the boundary, so the elastic solution
Pe must be chosen to satisfy the given boundary conditions.

If the domain D is infinite then the harmonic function V can be
chosen so that the Green's function vanishes at infinity like r_l. Then
it can be shown that the total stress function ¢ is dominated by Pe for
points far from the plastic zone.

Before developing an iterative method of solution it is desirable to
integrate by parts to eliminate the derivatives of stresses in equation (2.6).
Since G(P;Q) vanishes if Q 1lies on the boundary C and A(Q) vanishes
if Q 1lies on the elastic-plastic interface 1, the integrated terms are

all zero, and we obtain

o) = [, M(@)7,(@) $ (2:0) -1, (@) 3 (P30)]any + o, (P) (2.7)

10



It is convenient to use complex function notation here even though the
stress function is not harmonic in the plastic region. We will consider a
specific case of a half-plane y > O where boundary stresses Ty are applied
on a portion of the x-axis., The half-plane is sketched in Fig. 2.2 with the
observation point P at (x,y) the source point Q at (€,7) and the image

point Q@ at (€,-7).

+ P (%)

+ Q@fﬂ

+Q @9

Fig. 2.2 Observation, source and image points
for the half-plane

The Green's function can be constructed by the classical method of images.
The source of unit strength at Q and a source of strength -1 at the image

point Q results in zero value on y = O. Therefore, the Green's function is
G(P;Q) = L [-ln r +‘ln r=] (2.8)
> e 3%} P )

We use the usual complex variable z = x + iy and introduce the notation
Zp = X + iy, Zy = g + 1T, zg = E - i

.. = Z_ =~ Z. =X -8 + i(y-ﬂ)’ Zpg < Zp - Zg = X - € + i(y+7M) (2.9)

PQ P Q
1n(z,.) 1n(z =)
PQ _ Pq
Szpg) = 5 Rlzgg) =

11



The function R 1is analytic and single valued with respect to Zp if

P lies in the upper half-plane, but 8 has a branch point at Zp = zQ.

Nevertheless, the real parts of both these functions are single valued. It

is convenient to write the Green's function as
a(P;Q) = Re(S-R) (2.10)

Derivatives of the Green's function which appear in the integral equa-

tion are

BS as _ dS(ZPQ)

5——:- ————-———ES':— l
b4 g dZPQ EHZPQ
o __om_Bmg) o
5}? 5 dZ-PQ' 2TTZP-Q-
(2.11)
38 98 _ ian
y=Tam~*
OR _ OR _ ir
Sy T m;m T
Substitution of these results into (2.7) gives
9(P) = Re fo[(iTX—Ty)s' + (i¢X¢¢y)R’]dAQ + @e(P) (2.12)

The elastic solution Pe is obtained by ignoring plasticity effects or
by formally setting A equal zero in equation (2.1). Therefore 9, isa
solution of Laplace's equation, and it can be represented as the real part

of an analytic single-valued function of the complex variable ZP . However,

12



such a representation is generally not valid for the total stress potential
@ because A # O in the plastic zone. Nevertheless, it is convenient to
introduce a pseudocomplementary real function Y and write the complex inte-

gral (2.12) as

o(P) - v (P) + i¥(P) = j‘Ax[(iTX-vy)s'(P;Q) + (ir -r IR (P3Q)]aA,  (2.13)

If the observation point does not lie in the plastic zone A (P4 A), then
the functions 8' and R' are analytic bounded functions of Zp and so are
their derivatives. Then equation (2.13) can be differentiated with respect

to x and ¥y tb obtain the following results.

05 (P) = 95, (B) + 1¥, (P) = ‘J'AK[(i'rX-'ry)S" + (47 b7 )R"1AA)
(2.1k)

‘(’:y(P) - (Pe’y(P) + iY,y(P) = J

> Y 1t . . 1
Ax{(l¢x-¢y)ls + (1TXny)1R JdA Pt A

Q 2

In fact, the last portions of these integrals even converge if P ¢ A
because Q is always in the lower half-plane, and ZPQ can never vanish,
However, the second derivative of the singular term S 1is so strong tlat the
first part of the integral (2.1k4) would not exist for P ¢ A.

Instead, as shown in the Appendix, we must first extract a small neighbor-
hood &f the point P from the area of integration in equation (2.13) before
differentiating. The contribution of that small neighborhood is estimated
and then differentiated. Direct differentiation of the remaining integral
over the punctured domain A' can be carried out as in equation (2.1L4).

-

The sums of the two contributions are

13



]

s, (P) = 0, (P) + i¥, (P) = - A—@ig-iﬁ * j’A ADs" dAg - j'AxDR"aA

Q
(2.15)
cp,y(P) - cpe,y(P) + i‘l’,y(P) = i{-&ﬁ_lilgﬂ’l + J'A'AES"dAQ - j'AxDR"aAQ}
where
D= -Ty-iTX =0, - im,y D, = 'Tye_iTxe =5, " iwe’y (2.16)

and the bar over a quantity denotes its complex conjugate., The integral over
A' in equations (2.15) denotes the limit of the integral as the punctured
plastic domain is shrunk down about the singular point P.

Elimination of the function Y from equations (2.15) gives

_ )\.(P 5(]? : Vo lil "
p(P) - D_(P) = - __.__L_l2 + jA' ADS"dA; - jA ADR"dAg (2.17)

The last two integrals and De are analytic functions of =z but the first

P)
term of the right hand side shows that D 1is not analytic if P 1is in the
plastic zone A. However, for points outside the plastic zone the function

A vanishes identically, the region A' 1is the entire plastic zone A, and

equation (2.17) coincides with the results (2.1k) for the elastic region.

A Numerical Solution

An approximate rumerical scheme for the solution of the non-linear inte-
gral equation (2.17) will be described for a half-plane y > O loaded by a
parabolic distribution of stress Ty on y = 0. The starting values of the

iterative schehe are given by the elastic solution of equation (1.28).

1k
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Fig. 2.1 The Grid for the Numerical Scheme
As sketched in Fig. 2.1 a grid is defined over a region of the half-plane
large enough to include the expected plastic region. The stresses in each square

are assumed to be constant and equal to the valuesat the midpoint of the mesh.

The size of the squares is

dx = dy = h (2.18)

The coordinates of an observation point P are now given in terms of

integers and kP as follows:

Jp

Xp = (jP - 1/2)h yp = (kP’- 1/2)n (2.19)

15



The integrals of (2.17) are approximated by finite sums. The weights

attached to the complex stresses D = =~ Ty - iTX for each element of area

in the integral are

SA(P,Q) = 8"(2)0hy = ——p = 5= ——
2rr(ZPQ) g + ik,
(2.20)
h° 1 1
RA(P,Q) = R"(z5)dh = —— = 3=
am . . 2
R o ZPQ) [Jd + 1(ks-l)]
where the differences and sum of the integer coordinates are
Jg=Jdp-dq Kg=kp- Ik ko = kp+ Ky (2.21)

Now the integral equation (2.17) can be written in finite form

D(P)[L + A(P)RA(P,P)] + 5 A(P)B(P) = D_(P) + £'A(Q)[B(Q)8A(P,9-D(Q)RA(P,A)]
(2.22)
where the summation symbol with a prime indicates that all values of Q are
included except Q = P.
Some example calculations were carried out for a linearly strain harden-
ing material of the type discussed in Chapter I. The stresses were computed
in dimensionless form with T o the initial yield stress in shear, as refer-

ence. The level of strain hardening is described iy A where
A= (2.23)

and

16



T = T+ T = !D‘ (2-2,4‘)

Calculations were coded in FORTRAN IV so that the complex arithmetic could
be implemented directly in the program.

A simple point-wise iterative scheme was used for the solution of the
system (2.22). First the constant influence functions RA(P,Q) and
SA(P,Q) of equation (2.20) were calculated for a sufficient range of the
integers jd, kd’ and ks. Then the basic elastic solution De, given in
Chapter I for a parabolic distribution of load, was calculated and stored.

At each step of the iterative scheme the values of A were calculated
from the stresses of the preceding step. Hence, for the first iteration A
was calculated from the elastic solution., For each point P the right hand
side of (2.22) was evaluated and the new value of D(P) was calculated.
This new value of D(P) and the corresponding new value of A(P) were then
stored.

This simple point by point relaxation method converges if B 1is very
small, say B < 1l. This corresponds to a very rapid rate of strain harden-
ing; for example if B =1 and E = 3G then E = 2Et' It probably would
be possible to develop better methods involving simultaneous solution of
equations (2.22) for several points P, say for all the points in one col-
umn of the grid. Such column relaxation methods would probably be more use-
ful for cases of large B or small strain hardening.

An advantage of the integral equation method is that only values of
stresses within the plastic region need be considered. A disadvantage is
that there is coupling with all elements in the plastic zone, so each step

of the iteration involves many calculations.

17



Integral Equation for Plane Stress

An equivalent integral equation formulation can also be given for the

plane stress equation (1.12)

) (e 2 e}
= - - - X =
VVos= U\l(ox ) )]’yy D\l(oy 5 )]JXX + 3[7\]_Txy],xy O(X:Y)
where
Kl =K ko (2.25)

The development parallels that of the problem of transverse shear except that

the Green's function for the biharmonic problem must be used. The form is

2
ro, in r
6(P3Q) = G(x,y38,M) = —+—d s v (2.26)

In this case V 1is a regular biharmonic function in the region D, and V
is chosen so that the Green's function G and its normal derivative vanish
on the boundary C.

The Green's function for the biharmonic problem is the influence function
for the transverse bending of plates. It represents the product of the bend-
ing modulus times the deflection at point P due to a unit load acting at Q
when the boundaries of the plate are clamped.

Now we consider that the right hand side of equation (2.25) represents a
distributed transverse load. The total deflection due to that distributed

load with the edges of the plate clamped is

o, (P) = IA G(P;Q) p(Q)dA, (2.27)

18



In addition we may superpose a solution of the homogeneous equation where
o(x,y) = 0. This biharmonic function ©, can be adjusted to satisfy pre-
scribed non-zero values of displacement and slope at the edge of the plate.

The general solution is

- .
¢{P) = J'AG(P;Q){-D\l(crx-gi)],m-rxl(oy—g—x)],gg + 3007 Trenldhy + o (P)(2.28)

in terms of the plane stress problem the normal and tangential stresses
due to the integral are zero, and the biharmonic function me(P) is the solu-
tion of the perfectly elastic problem computed for the given boundary stresses.

Approximate iterative techniques similar to those of the transverse shear
problem could also be developed for the solution of the integral equation
(2.28). 1In order to reduce the error created by differsntiating the approxi-
mate quantities in the curly brackets, it is desirable to integrate by parts
to shift the differentiation onto the Green's function which is known exactly.

Most of the integrated terms vanish because G = G’§ = G,n = 0 on the

boundary C and Kl = 0 on the elastic-plastic interface I'. The remaining

terms are
o Tx 3
(P) = IFG{-(GX—2 ) hlﬁ] siny -(oy—E—) xl,g cos¥ + 3 Txy(xl,ncosy + Xl’g siny)}ds
Jy. o
+ fol{-(Gx_§‘)G’ﬂn -(Gny_)G’§§ * BTxyG’gﬂ}dA * we(P) (2.29)

where o 1is the angle between the x-axis and the exterior normal of the plas-

tiec region.

19



From the basic properties of the Green's function it follows tbat;the
. o

first integral is a regular biharmonic function if P is not on Iy and
the integral and its normal derivative vanish if P 1lies on the boundary
C. Furthermore, the integral and its normal derivative are continuous
across I', so it follows that the first integral gives zero stresses in
the entire region D and it can be omitted.

The second derivatives of the Green's function G,gg_’and G’nﬂ in-

cludé the singular term 1n r which also occurs directly in the Green's

PQ
function of the transverse shear problem. Stress components are obtained
from the second derivatives of equation (2.29) so the singular logarithmic

term must be treated by the puncturing technique used in the transverse shear

problem and discussed in the Appendix.

20



IT Appeﬁdix
If Pe A then we can not differentiate the singular term of (2.13)
directly. Instead we first break up the region of integration of the first
term as follows:
= [ A (ir - ] . =T 3 1 2,
I J e -ry)s (P,Q)dAQ JA-C £S'4A + fc £S'dA (A2.1)

A
o] o

where

= i - A2.2
f )\(rrX -ry) ( )

and Co is a small region, say a circle with radius € and center P,

such that Pe Co' A circle of this type is sketched in Fig, A2.1.

\
€
e 1Y
l
dy %
- dx -~
Fig. A2.1 A circular neighborhood Fig. A2.2 A rectangular
containing P. element

The next to last integral of A2.1 can be differentiated directly because

P 1is not contained in the punctured domain. The result is that

I

n=S, (12.5)
-C

O

21



has the &erivative

I, = JA-C f£8"dA (A2.4)

o}
The remaining integral taken over the circle can be modified by inte-

gration by parts

_ . d of
I, = jc £S'aEaN = JC [-ag(fs) + gg-,s]dgcm (A2.5)
o o]
The last term of the last integral can be differentiated directly with re-
spect to ZPQ, and its derivative is of the order O[e]. The next to last

term of (A2.5) can be integrated to obtain

d .
I = IC - 3¢ [£8(zpg)Jagan = - ‘]ac

o} Q

fS(zPQ)cos (n,x)ds (A2.6)

In the last integral it is emphasized that the angle between the
exterior normal and the x-axis is being used even though it does coincide
with the polar coordinate © of the circle in Fig. A2.1. The distinction
is of importance for the rectangular region of Fig. A2.2 which will be dis-
cussed later.

The last integral can now be differentiated with respect to =z Next

m.
we let P tend to Po and expand the differentiable function f about its

value fo at Po‘ The result is

1

2
L, = - gc 28" (25) cos (n,x)as = &= [ {r, + O[]}
[¢]

Z°Se e a9 (A2.7)
PQ

0
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Now for Q on the circle BCO we have ZPQ = - eele so the last integral
can be estimated and combined with the previous relations to obtain

Io=-22, orel+ [ £s"aa (A2.8)

1 2 A-C
0

If the size of the circle tends to zero, then the O[e] term is negli-
gible and the integral of equation (A2.8) tends to the limit of the integral
over the punctured region.

For numerical work involving a rectangular grid it is necessary
to use a rectangular neighborhood as sketched in Fig. A2,2, The same type
of development leads to a formula like A2.8 except that the term - fo/2 is

replaced by —fo 290/n where 60 is the corner angle of the mesh in Fig.

A2, 2,

tan 6
o)

] & | (A2.9)

In the case of a square element eo m/4  and the result is the same as

for a circle.
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TIT. A Finite Difference Scheme for Transverse Shear Problens

Introduction

In this chapter we consider the numerical solution of the problem of
the half-space y > O under the parabolic transverse shear loading given
by (1.27). The fully elastic solution for this problem is given by (1.28)
and (1.29). Here we assume a material having a bilinear equivalent stress-
total strain curve i.e., a material which strain hardens linearly.

The stress components can be expressed in terms of a potential function
o(x,y) by (1.17). The function ¢ satisfies (1.18) with A given by
(1.19)-(1.21). For convenience, we normalize all stress components with
respect to the initial yield stress in pure shear To That is, we take
T, to be unity in (1.19). We shall discuss the numerical solution of the

system of equations (1.18)~(1.21) here.

Nature of the Equation for o

In the elastic region, where A is identically zero, the differential
equation (1.18) for © reduces to Laplace's equation.

In the plastic region, A 1is given by

1 (3.1)

>
fl
ke3}
7~
N
]
-3

Differentiating )\ partially with respect to x and y, substituting in
(1.18) and simplifying gives
-1 2 -3 -1 2 -3 -3
1+ 8(1-~ + T “Jo_ + [1+ B(1- + B + 2B =0
(1+B(1-r"") By Jo + [1+B(1-r"7) oy ]cpyy BT 0,00, o
(3.2)
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The nature of this partial differential equation of the second order is

determined by the behavior of the function

b= [BT-wawng - [1*8(1'7_1) + BwiT-3J[l+B(l-T_l) + Bm57-3]

Simplifying and rearranging gives
-]\ 2 -1y -1
A=-T1+80-r"11% -1+ 801 r (3.3)
This expression is negative definite in the yielded region since A > O

throughout the plastic region. Thus, equation (1.18) is elliptic throughout

(in the plastic region as well as in the &lastic region).

Numerical Solution

We consider the numerical solution of the elastic-plastic transverse
shear problem for the half-space y > O with the boundary loading given by
(3.1). In view of the symmetry of the boundary loading it is sufficient to
consider the quarter space x> 0, y > O. This leads to the solution of
equation (1.18) in the first quadrant with suitable boundary conditions
along the x and y axes.

The boundary condition on the =xz-plane, viz

0 sIxl >1,5y=0
2
T,(1-x7), [x | <1, y=0
leads to the conditions on the x axis:
0 olx] > 1
Q= (3.4)

T 2
3 (x-1)"(x+2) ,lx| <1
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On the ¥YZ plane, because of symmetry, we have

This leads to the boundary condition

© = constant = = ¢ ,y >0, x =0 (3.5)

m

Wi

on the y axis,
We next set up a finite difference scheme for the solution of (1.18).
Instead of considering the entire first quadrant, we consider the finite

rectangle R:
R={(x,y): 0<x<a, 0<y<b} (3.6)

If the yielded region is very small and close to the origin, it follows from
the integral equation formulation of Chapter I that at large distances from
the yielded region, the solution is essentially that of the fully elastic
problem. (Mendelson [7] assumes this result without proof.) Thus we are
justified in imposing as boundary conditions on the edges x=a and y=2>
of the rectangle, the fully elastic solution.

We next describe the finite difference scheme used to solve equation
(1.18). The rectangle 0 <x<a, 0<y<Db is divided into MN square

meshes by means of the straight lines

x=3h j=1,2, ...M=1

b (3.7)
y=1 i

I
i——'
-
N
-
=
i
I—-l
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where a =Mh and b = Nh. This gives (M-1) x (N-1) interior points and

2(M+N-1) Yboundary points.

Let the value of the function f at the point (gh,ph) be denoted by
f . Let (£.)_, (£) denote the values of the partial derivatives of
pa X'pa y'ra

f at that point. If Pij is an interior mesh point, we have, in finite

difference form

£f)..= (£, . - £, . h
(diy = (1,508 = %1, 58/
(3.8)
£)..=(f,1 .2 1 .)/n
(T)ss = Cug g - fig,5)/
Thus equation (1.18) written in finite difference form is
80 5@ o) Jo10) _
DS, 5eg - DO 52 + TSPl 5 - TS 4 =0 (3.9)

In terms of the values of © and A at the meshpointswe can write this

equation in the form

) J+lrl+—(k j+xi’j+l)] + l[l+ (k J.+ i3 l)] + P J[l+2(>\ j+ 141, J)]
+ oo, o TLEQ, Ve, Tld(Bh, h. . N, . #h. o )] =0
101, 5P B g g g ey PR P sty e, 5

(3.10)

The procedure used for solving these equations is described next.
(n) th |, .
Let mij denote the values of mij after the n iteration. The

corresponding values of xij are calculated from the equations

kgg) = f1 - l/(T)§§)] (3.11)
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(T)(n) - F(m(n) (n)

i,5+1 " %4, 3- l) * (m(n) (n) )211/2/h

ivl,3 ~ 1-1 J (3.12)

During the (n+l)st iteration ¢§g+l) values are obtained by a "rew by row"

procedure. That is, we solve for w(n+l) (3 =1, 2, ... M-1) first, then

(

for m2§+l) (=1, 2, ..., M-1), and so on.

The m§§+ ) values for row 1 are obtained as follows. These are

assumed to satisfy the linear equation

(n+1) (m&) (n+1) . 5
o5 05,31 O3 Op,y * S5 04,50 7 Y (3.12)
where
_ 1 (n) (n)
a = 1+5 (A 5 + A i3 l)
_ 1, ()
Cj =1+ 2 (xl,J 1,g+l)
(3.13)

(n) , (n) (n) (n) (n)
bj = =k (hh ,J+h1,a+l%x1,a lfk ,3+K1+l,3)

b = < PR et o

For each "interior point" (j = 1, 2, ... M-1) we have an equation of the
form (3.12). The two equations corresponding to j =1 and j = M-1 in-
volve the known values of © on the boundary. Hence these two equations

may be written

(n+1) (n+1) ot
Py i1 T 00 =dy - a0 =dy
(n+1) (n+1)
11,2 F PMe1®i,me1 T el T %M-1%i,M dup (3.14 )
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where

©i,0 7 (me)i,o

Oim T (Gg)i,m

The set of M-l equations for the M1 unknowns mgngl) (=1, 2, .
2

can be written in the form

At g
i
where §§n+l) and d are the column vectors
[~ (n+l)~ N ]
®i1 dy
{n+1)
?i,2 do
d
3
g(nrl) _ 1 d =
i
. dM-2
CD(n.+l) ,
- 'iﬁM":L L dM~l e

and A 1is the tri-diagonal matrix

o
p~

by ¢y
ay by ¢, 0
a_b.c
37373
A = .
0 -2 Pyoo C-2
&1 Pyel

L. 29 -

(3.15)

. M-1)

(3.16)

(3.17)

(3.18)



The tridiagonal form of A enables ust solve.equation (3.16) readily

(Isacson & Keller 9]} A can be factorized in the bidiagonal form

Cw. 0 0 a1y 7
1 1 0
ay Op 0 0 1 Yo
A =1U = 0
a3 a3
0 0 Y2
a o
g M-1 Mrl_J L 1]
where
al = bl
o, =b; -8, v, 4 ,1= 2, 3, b4, ... M-1
vy = eyfo ,i=2,3, ... M-2

provided all ai's are nonzero,

Then eq (3.16) takes the form

LU @§”+l)’= d

The solution of the "intermediate equation"

Lg=2a
where
U @(n+l) _
i =
can be written
1
g = 4/
gi = (di - aigi-l)/ai ’) 1= 2) 3’ ¢ M_2

4
8y-1 (dM-I - By Byo) /Y
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(3.20)

(3.21)

(3.22)
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Finally, the solution of (3.16) is given by

(n+1) _
Pi,M-1 = &1
(n+1) _ (n+1) , _
mi,j = gj - 'Yj ‘Pi’j+1: Jd = M—2) M"3) ees L. (3'2)4‘)

The procedure described above gives the ¢§§+l) values for points on

the ith row. This procedure is carried out for rows i =1,2,3,.., in

succession. Initially, for n = 0, the elastic solution is assumed:

(o)
0. = (0 ),.

o e (3.25)
20 Lo

i3

where (o) denotes the value of the stress function for the fully elastic

i3
problem evaluated at the point Pij'

At each iteration the following quantity

A (n+1) (n+1)

= max|o; ; ofn)| (3.26)

L,y 7 1,3

was calculated, and fhe convergence of the sequence {A(n)} gives an estimate

of the convergence of the iterative scheme discussed above.
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IV An Attempted Simple Description of the

Plastie Deformation Near a Crack Tip

The goal &f this effort was to study the possibility of establishing a
simple fracture criterion based uponba modified Dugdale model which includes
material strain hardening parameters. In order to reduce tedious mathemati-
cal details which only obscure the physics, the first studies were made for
the case of transverse shear or mode IITI deformations instead of direct ten-
sion or mode I loading. An example is discussed in more detail in this
chapter.

In the Dugdale type model the effect of the plastically yielded zone
ahead of the crack tip is approximated by a mathematical problem with a
crack which extends through the plastic region, The configuration is shown

in Fig. L4.1.

YA
YA

Fig. L.1 The plastic region and the Dugdale model.

In the Dugdale model the entire cut plane is assumed to behave elastically,
and the effect of the plastic zone is approximated by To? the initial yield
stress in shear, acting on the segment O S‘x < a. A slight modification of

the Dugdale model is suggested in Fig. 4.1.b where the stress increases linear-
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ly from To to -t the ultimate shear stress at the end of the real

I
crack at (a,0).

For simplicity we consider an example of loading by concentrated
opposed shear forces Q acting perpendicular to the =x-y plane on the edges
of the cut at (d4,0). For initial yielding the high stress regions near the
loads Q are coupled only very weakly with the region of the crack tip and
hence they can be ignored.

This problem for the cut elastic plane can be solved by complex variable
methods, see Mushkelishvilli [1l], or by a combination of integral transforms

and complex variables, see Baker [12]. It can be verified that the following

complex stress functions give the solution of the elastic problem.

. ifQ [d Q
F(z) = Tyt it =3 z-d\[; + — +

TR [25@-(1+§6) ln/}—.;—i;-—g]’

(4.1)

F (z) = -0 + iCw = i {Q 1n_[§_:4£§ + (2 + 2) Jaz + ar 6(-5 )3/2
0 ' ﬂ /7 + /3 0 3 6 \a
=ar 14 8 2822 ln‘/E + /3
6 [ 2&] a fi - fa }
where
5 _ Ty " To
To

Dugdale required that stresses be finite at the origin to determine the
length a of the plastic zone. That condition has already been incorporated

in equation (4.1) and is
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9 2425 (4.2)
[, O

This finite stress criterion determines the plastic zone size, but it
does not give a failure criterion. In fact, if Q increases for a fixed
d then & also increases without limit.

We note two important features of the elastic solution. There is a log-
arithmic singularity in stresses at the end of the loaded region a. This
phenomenon occurs in all elasticity problems at points of the boundary where
the applied stresses are discontinuous. That singularity could be eliminated
by modifying the boundary load, say by adding a linear variation of stress
from T, down to zero over a small interval.

Another important point is that relative slipping occurs across the
loaded interval y =0, 0 <x <a. The loads Q shear those edges apart.
The local shear stresses acting on the segment tend to pull the edges back
together, but the local deformation is not enough to heal the cut.

However, the yielded material deforms more readily so the plastic plug
of the actual body does have continuous displacements across the segment
0 < x < a. The simple model which we proposed to investigate consists of
a crude approximation of the deformations in the plastic plug. Those defor-
mations are to be adjusted to provide ¢ontinuity of displacement and stresses
at I, the interface between the elastic and plastic regions.

A simple expansion was proposed for the stress function in the plastic

region. The compatability equation (1.18) is

(1+0) ng + A, 0 + Ky o, = 0 (k. 3)
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This equation applies in the region bounded by T and the x-axis, see

Fig. 4.2,
)

Fig. 4.2 The Plastic Region and Smooth Boundary Values.

As was noted in Chapter III the partial differential equation (4.3) is
elliptic. The Cauchy-Kowaleskii theorem, see Sneddon [ 8] or Courant and
Hilbert [13], states that for such an equation with given analytic boundary
data on an analytic curve, that the solution can be expanded in a convergent
Taylor series in a region adjacent to the given curve.

Estimates of the rate of convergence are generally very difficult, but

the theorem does support the use of an expansion of the following type,
2 |
o(x,y) = fo(x) +y fg(x) +y fu(x) o (4. k)

The stress potential is even in y Dbecause of the symmetry of the problem.

The corresponding stresses are

3
L]
-3
-
1

= 2y £5(x) + by f, (%) + ...
(4.5)

| 2 1
-!Ty = (‘{),X fO(X) + ¥y fh(X) + e
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The stress distribution used in the elastic solution (4.1l) is certainly
not analytic at x = a where there is a discontinuity. However, the stresses
are bounded in the plastic zone for any real material and must be distributed
approximately as shown in Fig. 4.2,

For any smooth distribution of this type there is an analytiec function
which closely approximates it. Then we can appeal to the continuous depend-
ence of the solution of an elliptic equation upon boundary data_to argue that
the deformation at the interface T is only slightly changed by this smooth-
ing process. However, the two distributions must be statically equivalent.

With the preceding arguments we can use the simple expansion (4.k) to
obtain the solution at least in a narrow region near the x-axis. Substitu~
tion into the compatability equation (4.3) and comparison of powers of ¥
gives relations between successive functions fo(x), fg(x), vee . The ana-
lytic function fo(x) whose derivative is the negative of the given stress
Ty(x,o) on the initial curve can be specified arbitrarily. Then the next
function fe(x) is given by

f (l+B)fo

£, = - 59 (L.6)

B+(148)E

and successive functions are cobtained from similar but more complicated
relations.

It is conceivable that the boundary stress, or function fo’ could be
varied in a systematic manner say by altering the coefficients of a polynomial

of given degree for both the plastic solution and the elastic solution until

the stress components and displacement agree at interface T,
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As a very crude approximation of such a process the matching was only
enforced at the point (a,yr) where the line x = a intersects the inter-
face I. The stress Ty was truncated after the second term so that it

varies parabolically on x = a:

T(ay) =1 - &5 [r, -7 layp)] = &y - ay (k. 7)

I}
I

o

The function A(a,y) was also truncated in parabolic form. It varies from

its maximum value on the x-axis down to zero on T.

2 2
Mayy) =B - =)A= 55) =2 (1 - ) (4.8)
L I Ir

The displacement at the interface is found by integrating equation (1.1k)

for the total strain

|

¥
| T
G w(a,yp) fo (142)r 0y

yr{(l+)\a)ao - r_xaao+a2(1+xa)]% + )\aa2% } (4.9)

Compatability of the simple elastic solution (4.1) and the crude plastic
approximations (4.7-4.9) was enforced in an inverse computational method.
The distance c¢ to the applied loads along the free surface of the crack was
chosen as a fixed reference length, and the plastic zone length a and the
stress difference '& -T, were varied. The corresponding value of @Q was
determined from the finite stress condition (4.2),and this specified the elas-

tic solution.
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From the elastic solution the point (a,yr) was determined, and the
corresponding stress Ty(a,yr) and displacement W(a,yr) were computed.
These values were substituted into the system of equations (4.7) to (4.9)
to find B, +the remaining material parameter, which warld give compatability
at the point.

The results, shown in Fig. 4.3, are disappointing. The dependence of
the load Q upon the plastic zone size a is onity moderately affected by
changes in 6, a measure of the ultimate strength, which is reasonable.
However, B, a measure of stiffness in the plastic range, depends primarily
upon 8 and not upon the yield zone size a. This indicates that the simple
truncated representation of stresses is not adequate.

It had been expected that such gross deformation features could be used
to modify the Dugdale model to introduce a failure criterion. Tt still is
reasonable that a better representation of the deformations in the plastic
plug could be obtained by using more terms in the expansion (k.4 ) and by
adding self equilibrating polynomial distributions of shear stress to the
loaded interval O < x < a in the elastic solution. These parameters would
be determined by enforcing compatability at more points on the interface,

Preliminary attempts were made to develop this type of point matching
technique for the types of problems considered in Chapters IT and IITI. How-
ever, a simple computational scheme was not found,and the methods considered
were very tedious to code. A feasible program was not developed.

Nevertheless, the feasibility study of this chapter did bring out sev-
eral features which show that such solutions,even if available, would still

not lead to a reasonable failure criterion. In particular, the boundedness
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and analyticity of the stresses at the end of the real crack play important
roles in physically realistic failure criteria,

Recent works by Rice[2,5] and Hutchinson[3,4] show stress singularities
at the ends of crack tips in strain hardening materials. The presence of
infinite stresses in continuum mechanics violates our most intuitive notions
of strength.

In the next chapter these questions are discussed in more detail. It
appears that not only the strain hardening characteristics of the continuum
representation of a material are necessary,but a better representation of the

microstructure at a crack tip is required to establish a failure criterion.
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V PFailure Criteria

The original purpose of this investigation was to determine the influence
of the strain hardening parameters of a material upon its fracture resistance.
However, some of the guestions of boundedness of stresses which arose in the
last chapter suggest that a better description of the microstructure at a
crack tip will be necessary in order to define a significant fracture criterion.
At this point we will review some useful fracture criteria for brittle materials
to provide a background for discussion of ductile materials.,

In his original work Griffith [1L4] utilized an energy criterion to deter-
mine an unstable or critical crack size in an infinite stretched elastic plate.
The conclusions agreed well with experimental results in spite of the fact that
the stress distribution included a singularity at the crack tip. In fact, in
later years the strength of the singularity or the stress concentration factor
of a linear elastic analysis became accepted as a useful measure of the regis-
tance of a cracked structural element made of a brittle material.

The paradox of a useful failure criterion involving infinite stresses
has been clarified by Barenblatt [15], [16]. Barenblatt's analysis accounted
for the intermolecular cbhesive forces whiéh act near the end of a crack in a
brittle elastic material. As indicated in Fig. 5.1, the end of the crack
closes smoothly so the opposite faces of the crack are very close in the end
zone. Therefore, intermolecular attractions are effective near the end of the
crack. However, where the opening of the crack is greater the mean attraction

or stress falls off as indicated in Fig. 5.1l.%.
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Fig. 5.1 The Barenblatt Model Fig. 5.2 The Dugdale Model

for a brittle elastic material

The effect of these additional intermolecular forces is to pinch the
ends of the crack together. 1In terms of the linear theory of elasticity
the applied or external loads produce a tensile stress singularity at the
crack tip or a positive stress intensity factor. The cohesive or internal
stresses produce a compressive singularity or a negative stress intensity
factor. Superposition of the two effects is wvalid in the linear theory,
so the singularities can cancel each other and leave a finite stress system.

Apparently for a given material at a given temperature there is a maxi-
mum pinch which the cohesive stresses can exert. This pinch is a material
parameter which gives the maximum attainable value of the stress intensity
factor. If the applied loads produce a greater intensity then the crack

nust grow.
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This model provides a good description of a tensile test of a brittle
material. The overall or gross behavior is that the applied loads vary
linearly with observable deformations right up to the point of rapid fracture.

A ductile material is represented better by the model proposed by Dugdale
[10] and utilized in the last chapter. Dugdale noted that the plastic zones
near crack tips in very ductile sheets which were locaded in tension appear
to be slender regions extending ahead of the crack as indicated in Fig., 5.2.a.

The stress measured in a bar tensile test of a ductile material is never
much greater than the initial yield strass o, Noting this fact and the
shape of the yield zones, Dugdale introduced a mathematical model, shown
in Fig. 5.2.b, with a crack extending through the actual plastic zones of
Fig. 5.2.a. The normal stress Gy is set equal to the initial yield stress

o on the "plastic interval” a of the longer mathematical crack.

In the Dugdale model the external loads, for example uniform tension
oy = T at infinity, also produce tensile stress singularities at the ends
of the mathematical crack of length 2¢ + 2a, The stress o, acting on the
plastic interval a produces a compressive singularity. Cancellation of
the singularities is used as a condition to determine the length a.

The size of the plastic zone determined by these methods does agree
well with experimental results obtained by Dugdale and by several subsequent
investigators. However, the analysis does not lead to a failure criterion;

if the applied load T increases toward SR then the size of the yield zone

grows indefinitely.
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Other authors have attempted to incorporate the strain hardening results
of tensile tests into a modified Dugdale model. For example Goodier and Field
[17] defined a measure-of'strain as the ratio of the opening of the Dugdale
crack at point A of Fig. 5.2.b divided by a "gage length" 2d. It would be
desirable to compare this measure with the strain at failure in tensile tests.

However, the gage length is not deduced from other dimensions of the body
or from material properties, so it must be determined from experimental results.

There is no evidence to suggest that the gage length is a universal material
constant.

A more detailed attack has been made by Rice [ 2,18]} and Hutchinson [ 3,4 ]
who have studied the stress singularities at the end of a crack in a plastic
region. Both of these authors have made extensive use of a path independent
integral which was developed by Eshelby [19] and was rediscovered by Rice and
by Cherepanov [207].

The invariant integral is

g=f (way-7- 53 as) (5.1)
r

where the strain energy density at a point is

e
.13
w = w(x,y) = wle) = jo 055 845 (5.2)
T is the traction vector acting on the material contained by the contour T,

and u is the displacement vector. The contour I encircles the end of a

flat sided notch as shown in Fig, 5.3.
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The derivation of the path independent integral requires that I passes
from a point on the lower flat surface of the notch to a point on the upper
flat surface. In addition [’ must lie in a portion of the elastic medium
free of singularities. On flat stress-free segments of the notch faces the
integrand of (5.1) vanishes. Hence, the end points of I' can be moved along
such segments with no change in J. Rice has shown that it is often possible
to evaluate J by choosing a path I where the integrand is known. Sometimes
this path is the boundary of the cracked body.

If the notch is a flat stress-free crack, then I can be shrunk down
to a small circle around the crack tip and J has the form

J=r fﬂ {wle(r,0)] cos ® = T (r,8) . gg (r,06)1ae (5.3)

i
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Since r can tend to zero, the integrand must have a singularity of the order
1/r. 1In a linear elastic material the stresses are proportional to strains so
both would have the characteristic r—l/a singularity.

Introduction of cohesive stresses in a small end zone of length & re-
gquires modification of the limiting procedure. Now the traction T is non-
zero so the integral over the flat end region must be retained. On the other
hand, if stresses are finite at the tip then the integral of (5.3) is bounded

and the product with r vanishes in the limit. Then the value of J 1is

8
J=2] oy(r') %‘I@, ar* (5.4)
o]

It can be shown in linear elasticity theory that a finite stress system

at the origin leads to a crack opening with the asymptotic form

v~ art/? (5.5)
° 8o (r')
J=a J S A—— (5.6)

The last integral is proportional to Barenblatt's modulus of cohesion, a
‘material property.
Similar techniques can be used to study the strdss and strain state at
the end of a crack in a ductile medium, but certain modifications are necessary.
Rice has argued appropriately that deformation theory can be used under
conditions of proportional loading which are satisfied for initial plastic
yielding. Under these conditions the deformation theory is really equivalent
to non-linear elasticity, and the derivation of the J integral is still

valid.
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Infinite stresses, of course, are still unreasonable even for a plastic
or non-linear elastic material. The singularity can be eliminated, as in the
elastic case, if we introduce cohesive stresses near the crack tip in order to
provide a reasonable continuum representation of the microstructure where frac-
ture occurs.

It can be expected that the continuum approximation of the crystal struc-~
ture must be invalid at the crack tip where grains and impurities must begin
to pull apart. In fact, experimental work by Rogers [21] and Puttick [22]
show a fibrous microstructure where voids appear near the end of a crack. The

appearance is indicated in Fig. 5.4.

Fig. 5.4 The Fibrous Zone at a Crack Tip.

It seems reasonable to use continuum mechanics for the region outside
the dashed lines, but not in the shredded zone just ahead of the crack. A
useful representation of that zone probably could be made in terms of cohesive
stresses acting on the end of the sharp crack indicated by dashed lines. The
effective pinch exerted by those fibers could probably be described conveniently
by an integral like that of equation (5.4).

A representation of this type would parallel the description used for
brittle elastic materials. However, there is one very important difference

for the plastic or nonlinear elastic material. Because of the nonlinearity

by



of the system it is not permissible to use superposition. Therefore, stress
or strain concentrations cannot be added, and the usefulness of a stress in-
tensity factor as failure criterion is highly doubtful. It appears that more
convenient but detailed methods of analysis must be developed for the nonlinear
problems.

When such a localized pinch is used we expect that the cohesive
stresses near the crack tip must be very large as they are in the Barenblatt
brittle model. This seems to contradict the well known behavior of ductile
materials in tensile tests where the mean stress is never mucl larger than
the initial yield stress, o However, those test results only gilve the
mean stress but no details of the stresses near microcracks in the specimen.
Similar remarks apply to tensile tests of brittle materials; fracture occurs

at a mean stress far below the level of cohesive stresses.
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VI Conclusions

Problems of the first kind for the deformation theory of plasticity
have been studied. Tractable numerical methods based upon finite differ-
ence equations and upon a nonlinear integral equation formulation were
developed. The integral equation approach apparently has not been used
before in the theory of plasticity. It is a potentially useful tool and
should be developed further.

Crude approximate attempts to obtain the stress distribution in the
plastic region near the crack tip revealed the importance of the description
of the microstructure in the region where tearing occurs. We conclude that
this description is as essential as the strain-hardening continuum represen~
tation of the material for the establishment of a useful failure criterion.

Although the stress concentration method is useful for linearly elastic
brittle materials, it does not seem feasible for ductile materials. The
plastically deformed material behaves in a highly nonlinear manner, so that
superposition is not wvalid.

It appears that more convenient approximate methods of solution must be
developed for problems of a nonlinear continuum. Perhaps such methods could
be combined with approximate descriptions of the microstructure to derive a

fracture criterion in a form useful for engineering design.
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